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Abstract
The core problem in optimal control theory applied to quantum systems is 
to determine the temporal shape of an applied field in order to maximize the 
expected value of some physical observable. The complexity of this procedure 
is given by the structural and topological features of the quantum control 
landscape (QCL)—i.e. the functional which maps the control field into a 
given value of the observable. In this work, we analyze the rich structure of 
the QCL in the paradigmatic Landau–Zener two-level model, and focus in 
particular on characterizing the QCL when the total evolution time is severely 
constrained. By studying several features of the optimized solutions, such as 
their abundance, spatial distribution and fidelities, we are able to rationalize 
several geometrical and topological aspects of the QCL of this simple model 
and identify the effects produced by different types of constraint.

Keywords: quantum optimal control, control landscape, quantum speed limit

(Some figures may appear in colour only in the online journal)

1.  Introduction

The development of new technologies based on quantum information processing is currently 
blossoming. Proposals for communication, computation and simulation protocols based on 
quantum mechanical effects [1–3] are nowadays being transformed into reality thanks to the 
extraordinary capabilities of such physical platforms as cold atoms in optical lattices, quantum 
dots and superconducting qubits [4–6]. To take full advantage of this, scientists rely on their 
growing ability to control physical systems in the quantum regime by using properly tailored 
external fields. In this context, optimization methods originally put forward in the late 1980s 
have proven to give robust control strategies [7, 8].
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The typical problem to solve is to find the control field ε(t) which maximizes a certain 
objective functional J[ε], i.e. the probability of reaching a target state, for instance. Extensive 
application and study of these quantum optimal control techniques over the past few decades 
has given evidence of the benign features of what is commonly called the quantum control 
landscape (QCL)—that is, the functional dependence of the objective J on the field ε. In a 
seminal work [9], Rabitz et al showed that, under certain conditions, the QCL was devoid 
of sub-optimal local maxima (see also [10] for a prior related work). This result explained 
the extraordinary success of local optimization procedures. This remarkable result about 
the topology of QCLs has been intensively tested and studied over recent decades [11–13], 
and limitations are known to arise in various cases. For instance, local maxima or traps are 
expected to appear when the control problem has constraints [14–17]—due, for example, to 
the time-discretization of the fields or bandwidth and amplitude limitations imposed to them. 
Another interesting constraint is given by the evolution time of the system. Traps have been 
shown to exist in the vicinity of the minimal or quantum speed limit (QSL) time [18]3, and 
there have also been numerous reports of slowing down of optimization algorithms in that 
regime [19, 20]. However, systematic analysis on how exactly these constraints affect the 
control landscape have been limited as to now, and a joint assessment of multiple types of 
constraints is currently lacking in the literature.

In this work, we present a systematic analysis on the effects of controlling near the QSL 
(i.e. restricting the evolution time) on the structural and topological features of QCLs. In par-
allel, we also consider constraints given by the coarse-graining of temporal variable, which is 
inherent to any numerical implementation. This is, to the best of our knowledge, the first joint 
assessment of the interplay between these types of constraint on the features of the control 
landscape in a quantum system. Note that for a single control field, the optimization space 
has a dimension of Nts, which is the number of time slots we use to discretize the temporal 
variable. Typically, Nts may be of the order of 102 or 103, and so it is not trivial to assess the 
global properties of J[ε], whose representation is given by a hypersurface in a Nts + 1 dimen-
sional space. We therefore propose a number of strategies to probe the QCL in order to obtain 
information about its features. By using random initial seeds, we explore a certain region of 
the parameter space, and using standard local optimization techniques, we arrive at optimized 
solutions. For these, we study (i) the distances between them, which allows us to to probe the 
number and distribution of maxima in such region; (ii) their fidelities, which give us informa-
tion about the emergence of traps due to the constraints imposed on the problem; and (iii) a 
structural parameter R defined in [21], which measures how straight the path is between the 
initial seed and the optimized solution. This parameter allows us to observe structural proper-
ties of the landscape.

We use as a testbed for our analysis a simple, yet paradigmatic model of a driven two-
level quantum system which is described by the Landau–Zener Hamiltonian. This model 
has been widely applied in quantum physics, as it describes non-adiabatic transitions [22], 
Landau–Zener–Stuckelberg interferometry [23] and quantum phase transitions [24]. For this 
model, a related study explicitly showed that the control landscape is indeed devoid of traps 
for Nts → ∞ [15]. Here, we go beyond that result and characterize not only the topology of 
the landscape but also its geometrical structure as a function of both Nts and the evolution time 
T. Although local maxima (traps) disappear in the limit of continuous field, global maxima are 
shown to exhibit an interesting two-clan structure in the vicinity of the quantum speed limit 

3 Here we use ‘minimal control time’ and ‘QSL’ as synonyms for the shortest process duration with perfect control 
(fidelity equal to one). Other works consider QSL as a bound for the minimal evolution time between initial and 
final states.
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(QSL). Moreover, the two families merge at the QSL, rendering only one (global) maximum 
for any landscape with T < Tmin. Regarding the geometry of the landscape, we analyze the 
straightness of the trajectories traversed by a pure gradient algorithm towards the maxima, by 
comparing the actual path length and the Euclidean distance between initial and optimized 
fields. These trajectories through control space are found to bend as T approaches Tmin, and a 
discontinuous jump is observed at T = Tmin where every path from hundreds of random seeds 
reach the only global maximum in a perfect straight line. That is, the landscape is found to be 
trivial at the quantum speed limit.

In order to gain intuition about the different measures we propose, we perform a detailed 
study on the two-dimensional (2D) (i.e. Nts = 2 control problem. In this case we can visual-
ize the landscape as a surface in a three-dimensional space, and thus directly relate it to our 
numerical optimization results. Interestingly, we also find that many features already seen in 
this simple model carry over to higher-dimensional landscapes.

This paper is organized as follows. In section 2, we present the basics of optimal control 
theory and its application to the Landau–Zener two-level model. In section 3, we will present 
a ‘toy model’ in which the control field is discretized into just Nts = 2 time steps. This will 
allow us to visualize the landscape directly, and thus will be helpful in designing strategies that 
allow us to probe its features in a more general setting. In section 4, we discuss such strategies 
and show results for general landscapes with Nts > 2. Finally, in section 5, we present some 
concluding remarks.

2.  Quantum optimal control and the Landau–Zener model

Consider the time evolution of an isolated driven quantum system described by the following 
Schrödinger equation

i
dÛt

dt
= [Ĥ0 + ε(t)Ĥc]Ût,� (1)

where Ût  is the unitary evolution operator of the system at time t, H0 and Hc are the drift 
and control Hamiltonians respectively, and ε(t) symbolizes the control field. Note that we set 
� = 1 from here on. Optimal control theory assesses the problem of deriving the shape of ε(t) 
that maximizes the value of a cost functional J[ε]. For example, a typical goal of control tasks 
is to take a given initial state |i〉 to a desired target state | f 〉 in a (fixed) time t  =  T—that is, to 
obtain UT |i〉 = | f 〉 (up to some global phase). Finding the fields that perform the desired task 
with the best possible accuracy is identical to locating the global maxima of the QCL J[ε], 
which, in this particular case, would simply take the form J[ε] = |〈 f |ÛT |i〉|2. We can look for 
such maxima by proposing an initial seed ε(0)(t) for the field, and to update it iteratively by 
using information about the gradient of J[ε]. This is the idea behind most of the optimal con-
trol methods which have been widely incorporated by quantum scientists in recent decades, 
such as Krotov [8, 25], GRAPE [26] and others. An algorithm of this type would generate a 
path through the landscape which connects ε(0) to some optimal field ε(K)(t), where K denotes 
the number of iterations. Note that while, ideally, we expect J[ε(K)] = 1, the optimization 
will in general stop either when J[ε(K)] = 1 − δ  or when the gradient of the cost functional 
vanishes: ∇J[ε(K)] � 0.

Optimal control techniques have been applied to a variety of scenarios ranging diverse 
areas, and has been especially fruitful in quantum chemistry [8, 27] and quantum informa-
tion related protocols [28–30]. Here, we will focus on a simple but non-trivial model of a 
controlled quantum system. Let us consider a two-level system described by the Hamiltonian

M Larocca et alJ. Phys. A: Math. Theor. 51 (2018) 385305
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Ĥ(ε(t)) =
∆

2
σ̂x + ε(t)σ̂z,� (2)

where σx and σz are Pauli matrices. External driving ε(t) weights the energy difference 
between σz eigenstates and Δ is usually referred to as the energy gap, since it measures the 
minimum separation between the eigenenergy branches of H(ε), which occurs at ε = 0. The 
Landau–Zener Hamiltonian (equation (2)) can describe a two-level atom interacting with 
electromagnetic radiation in the rotating-wave approximation (RWA) for constant Rabi fre-
quency and a time-modulated detuning [31] or a spin in a constant magnetic field in the 
x-direction and a time-dependent one in the z-direction.

When the state is initially prepared as |ψ(t → −∞)〉 = |0〉, choosing ε(t) = v t yields the 
famous Landau–Zener problem [22, 32], for which an analytical formula can be drawn for 
the asymptotic probability of population transfer between |0〉 and |1〉 (the eigenstates of σz). 
Here, we are interested in achieving complete population transfer between those states, and 
we will often also be interested in minimizing the evolution time. Linear sweeping of the 
control parameter is not efficient in this context, since large evolution times (scaling as ∆−2 
[33]) would be required by virtue of the adiabatic theorem. As a consequence, we will resort 
to optimization techniques in order to find an appropriate shape for ε(t) that maximizes

J[ε] = |〈1|ÛT [ε]|0〉|2� (3)

for each fixed value of T. We note that the control landscape could have symmetries depend-
ing on the particular protocol that we want to implement. For the case of complete population 
transfer between σz eigenstates, any control protocol has the properties J[ε(t)] = J[ε(T − t)] 
and J[ε(t)] = J[−ε(T − t)]. We give more details about this in the appendix.

The issue of time-optimal control in this scenario was studied by Hegerfeldt [34], who 
showed that there is a minimum control time which is given by

T = Tmin =
π

∆
,� (4)

meaning that for T < Tmin, it is not possible to achieve full population transfer, i.e. J[ε] < 1 
for all ε(t). Remarkably, the field shape which accomplishes the control task at T = Tmin is 
simply ε(t) = 0.

3.  Looking at the landscape: toy model for the control

As already mentioned in the introduction, it was shown in [15] that the control landscape J[ε] 
determined by the Landau–Zener Hamiltonian (2) has only global optima when we consider 
a continuous-in-time control field ε(t), that is, it is a trap-free model. Moreover, these global 
optima should correspond to J[ε] = 1 only for T � Tmin. However, any practical realization of 
the optimization problem stated above implies performing a coarse graining of the temporal 
variable. As a result, the control function ε(t) will now be represented by a vector of control 
variables, namely

ε(t) → {εk} ≡ �ε� (5)

with k = 1, 2, . . . , Nts. The functional dependence of J is then mapped to an explicit depend
ence of the objective on the control parameters (and, also, on the evolution time)

J[ε] → J ({ εk }, T) .� (6)

M Larocca et alJ. Phys. A: Math. Theor. 51 (2018) 385305



5

Naturally, we will not be able to visualize the landscape for Nts > 2, and because of that, 
in section 4, we will propose various strategies to obtain information about its features. In 
this section, we will study the simplest non-trivial scenario, where Nts = 2, in order to gain 
intuition about the properties of the landscape. To that end, we propose that the field ε(t) is of 
the form

ε(t) =
{

a1 if t � T/2
a2 if t > T/2.� (7)

It is then easy to evaluate the objective functional of equation (3):

J(a1, a2, T) =
∣∣∣〈1|e−iH(a2)

T
2 e−iH(a1)

T
2 |0〉

∣∣∣
2

.� (8)

In figure 1, we plot the control landscape of equation (8), as a function of control param
eters (a1, a2) for different values of the total evolution time T, both below and above the 
quantum speed limit time Tmin (equation (4)). Figure 1(a) corresponds to T = 0.7Tmin. In this 
case, the landscape shows only a single global maximum at the origin, with maximum fidelity 
of J � 0.65 (sub-optimal). As T → Tmin  the landscape’s topological structure remains unal-
tered, hosting a single global maximum with ever-growing fidelity. At T = Tmin, the global 
maximum reaches its optimal height J  =  1 (figure 1(b)).

For T > Tmin, a much more intricate structure in the topology of J(a1, a2) is clearly 
observed in figures 1(c) and (d). The maximum at the origin splits into two symmetrical global 
maxima, which steadily separate from each other as the total evolution time is increased fig-
ure 1(c). In figure 1(d), we plot the control landscape at T = 10Tmin. The landscape presents 
many extrema, as was shown in [15]. We observe a shrinking of the characteristic scales as a 
function of control parameters (a1, a2) for increasing T.

It is important to point out that, in general, the minimum control time will be a func-
tion of Nts. This is so because we have defined Tmin as the minimum value of T such that 
J({εk}, T) = 1. However, for the two-level problem considered here, analytical arguments 
have shown that Tmin = π/∆ [34] and the corresponding optimal field is ε(t) = 0. Since that 
field is trivially achieved with any discretization (i.e. any value of Nts), we do not have to 
worry here about having to consider a Nts-dependent minimum control time.

As mentioned in section 2, the strategy to obtain control fields through optimization is to 
propose an initial seed field and update it iteratively by using information about the gradient 
of J[ε]. This process stops either when unit fidelity is obtained (1  −  J  <  10−16) or when the 

Figure 1.  Control landscape for the Hamiltonian of equation (2) with initial state |0〉 and 
target state |1〉. The case depicted here corresponds to the scenario where Nts = 2 and 
so the control field is mapped to a 2D vector (a1, a2). Subplots correspond to different 
values of the total evolution time: (a) T/Tmin = 0.7, (b)T/Tmin = 1.0, (c)T/Tmin = 1.2 
and (d)T/Tmin = 10. The energy gap is set to ∆ = 1 in all cases.

M Larocca et alJ. Phys. A: Math. Theor. 51 (2018) 385305
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sum of the squares of the gradients with respect to the control amplitudes falls below a certain 
threshold (

∑
i |∇iJ|2 < 10−6). We can interpret this procedure as a path through the land-

scape. In [21, 35, 36], a measure R of the straightness of the paths was proposed. R is defined 
as the ratio between the length of the optimization trajectory, defined as

dPL =

∫ smax

0

[
1
T

∫ T

0

(
∂ε(s, t)
∂s

)2

dt

]1/2

ds,� (9)

and the Euclidean distance between the initial seed and optimal control field,

dEL =

[
1
T

∫ T

0
[ε(smax, t)− ε(0, t)]2 dt

]1/2

.� (10)

The new variable s parametrizes the optimization path, such that the initial seed is 
ε(s = 0, t) and the optimized solution is given by ε(s = smax, t). We stress that the importance 
of inquiring into the non-topological details of the landscape is evident, since a trap-free land-
scape does not guarantee an easy optimization. Complex-structured landscapes may constrain 
optimization paths to inefficient twisted routes.

In figure 2, we show some results of the calculation of R using a simple steepest ascent 
algorithm. For each initial seed, the step size of the gradient optimizer was successively 
decreased until a converged value of R was obtained. Two representative trajectories through 
the landscape of equation (8) for T = 0.7Tmin are plotted in figure 2(a). As we can see, one of 
them is completely straight, giving R  =  1 whereas the other one, yielding R  =  1.23, is slightly 
arched [21]. In order to gain some insight into the structure of the landscape, a statistical anal-
ysis of R was performed using 1000 random initial seed fields in the region −1 < a1, a2 < 1. 
Each initial field was optimized and the measure R of its path in the landscape was computed. 
Mean value and standard deviation of the R distributions are shown in figure 2(b) for various 
values of T. Only those trajectories leading to a global maximum were considered. This fig-
ure indicates that the length R of the path towards the optimal, and therefore its complexity, is 
increased with T/Tmin. This is consistent with the structure of the landscape that was plotted 
in figures 1(a)–(d).

4.  General control fields and multidimensional landscapes

The control landscape cannot be directly visualized for control space dimensions above 
Nts = 2. We can, however, obtain information about it by generating a large number of initial 
seeds and analyzing the resulting control trajectories statistically. This idea has been used in 
previous works on quantum optimal control [15, 18]. This approach has intrinsic limitations, 
since limited computational resources give rise to what is usually known as the exploration–
exploitation trade-off in optimization theory [37], by means of which a detailed characteriza-
tion the whole multidimensional landscape is out of reach. Here, we will focus on probing 
the landscape in a region centered around ε(t) = 0. This is an obvious reference in this case, 
since the energy spectrum of the Hamiltonian in equation (2) is symmetric with respect to 
ε = 0. Also, using constant, feature-less fields as initial guesses is a common approach in 
optimal control problems. Finally, as mentioned in section 2, this is the actual optimal field for 
T = Tmin. Thus, the chosen landscape region is relevant for exploring.

In the remainder of this section, we propose various methods for probing the structure 
and topology of the control landscape. The common methodology is as follows. An initial 
guess for the control field ε(0)(t) is generated as a vector of random numbers {ε(0)

k }, where 

M Larocca et alJ. Phys. A: Math. Theor. 51 (2018) 385305
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−A � ε
(0)
k � A and k = 1, . . . , Nts. The field is then optimized using the GRAPE algorithm, 

which is currently built into the QuTiP Python package [38, 39]. The iterative optimization 
stops when the gradient of the functional satisfies a standard convergence criterion. The pro-
cess is then repeated for a large number of random initial seeds (of the order of 1000) in order 
to draw sufficient statistics.

4.1.  Distance between optimal fields

Our first focus of interest is on the topology of the landscape—specifically, the number, distri-
bution and nature of its extrema. When dealing with multidimensional control optimization, it 
is a well known fact that different initial guesses lead generally to different optimized fields, 
albeit usually yielding similar optimized fidelities. In order to explore this behavior, we study 
the distribution of the optimized control fields as follows. For each pair of optimal fields 
found, we calculate the distance between them simply as

Dij =
1
T

∫ T

0

∣∣∣ε(i)(t′)− ε( j)(t′)
∣∣∣ dt′.

� (11)
The mean value of the distance 〈D〉 between optimized fields is plotted in figure 3 as a func-

tion of the evolution time T, and for different values of the number of time slots Nts. There, 
we can see that 〈D〉 is close to zero when we intend to control the system below the quantum 

Figure 2.  (a) Two optimization trajectories in the landscape of equation  (8) for 
T/Tmin = 0.7. The corresponding initial seeds are shown as orange circles, and the final 
optimized parameters are shown as green circles. (b) Mean value of R as a function of 
T/Tmin using 1000 initial seeds. Vertical dashed line indicates the value of T/Tmin at 
which the trajectories of panel (a) were computed. Vertical orange lines represent the 
standard deviation of the distributions.

M Larocca et alJ. Phys. A: Math. Theor. 51 (2018) 385305
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speed limit time, and rises steadily beyond that regime. This tells us that the control landscape 
for T/Tmin < 1 has essentially a single maximum to which all initial seeds converge. However, 
for longer control times, optimized solutions spread out in multiple global maxima. This is the 
same feature that was found for the simple case of Nts = 2, and we show here that it extends 
to Nts of the order of 1000.

A remarkable conclusion from this analysis is that the landscape undergoes a sudden trans-
formation at T = Tmin. Note that, a priori, we expected the evolution time T to impact the 
height of the extrema, by definition. Nevertheless, results shown here demonstrate a more pro-
found topological change on the landscape when traversing the quantum speed limit, giving 
rise to multiple extrema which were absent for smaller control times. It would be interesting 
to explore whether this phenomenon also takes place in more complex quantum systems. We 
leave this issue for future work.

We also point out that the spreading of optimal solutions at the onset of controllability, i.e. 
for T > Tmin, is consistent with the concept of superlandscape introduced recently. This is due 
to the fact that small (time localized) perturbations of an optimum field can be easily com-
pensated to make the perturbed field optimal as well, leading to many closely spaced locally 
optimal solutions [37].

In order to obtain a deeper insight about this result, we take a closer look at the actual 
distribution of distances found by this procedure. Results are shown in figure 4(a) for two dif-
ferent values of the evolution time T. For T/Tmin = 1, distances between optimized fields form 
a unimodal distribution, indicating a narrow spread of optimal solutions around some point in 
parameter space. As already seen in figure 3, for T/Tmin > 1 the mean distance shifts to larger 
values. Also interestingly, the distribution becomes bimodal in this case. This means that the 
optimized solutions now cluster around two points in control space �εA and �εB; the leftmost 
peak in the distribution corresponds to distances between solutions in the same cluster, and the 
rightmost peak to solutions in different clusters. This clustering behavior can be understood 
as the emergence of the two global maxima in the superlandscape. This relation between opti-
mal fields was already seen in the 2D case Nts = 2—see figure 1(c). This shows a non-trivial 
connection between the easily tractable low-dimensional control landscape and the complex 

Figure 3.  Mean value of the distance between optimal fields as defined in equation (11), 
as a function of the total evolution time measured in units of Tmin = π/∆. The results of 
a statistical analysis, involving one thousand random initial seeds in the A  =  1 region, 
are shown for various choices of Nts, the number of time slots into which the field is 
discretized.

M Larocca et alJ. Phys. A: Math. Theor. 51 (2018) 385305
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multi-dimensional one. We plot representative solutions of each type in figures 4(b) and (c), 
from which we observe that �εA ∼ −�εB.

4.2. Trapping probability

In this section we explore the emergence of traps, i.e. sub-optimal local maxima in the land-
scape, as a function of the constraints imposed on the control problem. In order to do this, we 
consider that a particular control trajectory has become trapped if it is unable to reach some 
fixed target fidelity J̃ < 1. Then, for fixed T and Nts, we define the trapping probability as the 
fraction of optimized solutions that became trapped.

In figure 5, we plot this quantity as a function of the number of time slots Nts, for various 
evolution times T/Tmin and for two values of the fidelity threshold J̃ = 0.99 (figure 5(a)) and 
0.999 (figure 5(b)). It is readily seen from the plots that the trapping probability goes to zero 
for large Nts in all cases. This had been shown in [15], where the authors analytically proved 
that in the limit Nts → ∞, the landscape is indeed devoid of traps.

From figure 5, it can also be seen that for values of T far from the quantum speed limit, the 
different curves approach each other, meaning there is no significant change in the abundance 
of traps with total time variation. However, when T/Tmin approaches 1, the behavior is mark-
edly different, and the trapping probability decay slows down. Moreover, this effect becomes 
more pronounced for a tighter fidelity threshold; that is, for evolution times T/Tmin > 1.3, the 
probability of trapping does not change with the choice of threshold. This implies that on the 
onset of controllability, the optimization becomes harder—as it is more likely for a random 
initial seed to converge to a trap. This interesting result highlights the role of the evolution 
time as an important constraint in control problems.

We point out that many previous works have reported that optimal control near the quantum 
speed limit time tends to become slower, in the sense that more iterations are needed in order 
to reach a satisfactory fidelity. In the landscape picture, this can be understood as maxima 

Figure 4.  (a) Distribution of distances between control fields as calculated by 
equation (11), for two different values of the evolution time T. The initial seed fields 
for optimization were generated as vectors of random numbers in the A  =  1 region. The 
number of time slots Nts was fixed to a hundred. Notice that histograms for T/Tmin < 1 
have zero mean and vanishingly small variance, and so are not shown in this plot. Panels 
(b) and (c) show optimized control fields belonging to different regions (clusters) in 
control space �εA and �εB (see text for details).
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Figure 5.  Trapping probability as a function of Nts (the number of parameters in the 
control field), for different values of the total evolution time T. A control trajectory is 
said to be trapped if it converges to a final fidelity below (a) 0.99 and (b) 0.999. Results 
shown correspond to 500 random seeds, in the region of parameter space where A  =  50 
(see text for more details).

Figure 6.  Mean value of R as a function of T/Tmin for several number of times slots 
Nts of the control field. We have used 1000 initial seeds. (a) Nts = 10, 20, 30 and 100.  
(b) Nts = 200, 300, 500 and 1000.
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becoming more flat (as can be seen for example in figure 1(b)). We stress that the result shown 
in this work is of a different nature, since here we observe the appearance of traps for suf-
ficiently small times. Since we set a convergence criterion for the optimization based on the 
gradient of the functional, we can effectively distinguish actual traps from flat global optima.

4.3.  Looking at the structure of the landscape using the measure R

In this section, we study the behavior of the measure R introduced previously, in the case 
where Nts > 2 so neither the landscape nor optimization paths can be directly visualized. 
Instead, we probe the structural (non-topological) features of the landscape by analyzing the 
behavior of the R distributions.

In figure 6, we show the mean value of R computed for 1000 initial random seeds for sev-
eral values of time slots Nts of the field. Several important features can be remarked. For small 
T/Tmin → 0 in figure 6(a), we can see that the mean R approaches 1. This means that almost 
all trajectories of the optimization process are straight lines, showing that the landscape has a 
simple topological structure as was shown for Nts = 2 in figure 1(a). Remarkably, the same is 
observed for T = Tmin and for Nts > 10 (see the pronounced deep trench in T/Tmin = 1). That 
is, the landscape has also a simple structure in Tmin. For greater optimal evolution time T the 
mean R shows a sharp jump that indicates the birth of the two optimal solutions shown in fig-
ure 4. We note that as T is increased after the Tmin, the mean value of R decays smoothly. This 
fact shows that the structure of the landscape is simpler when the constraint on the evolution 
time T is relaxed, as expected [9, 21].

In figure 6(b), we show the mean value of R for greater values of time slots Nts = 200, 300, 500 
and 1000. We can clearly see that the greater is Nts, the smaller is R. This means that the optim
ization process becomes simpler as we increase the number of time slots into which the field 
is divided.

5.  Concluding remarks

In this paper, we study the quantum control landscape of a paradigmatic system: the two-
dimensional Landau–Zener Hamiltonian. We present systematic study of the influence of two 
important constraints: the discretization and the time extension of the control field. When the 
number of time steps of the control field is two, the landscape can be directly plotted and sev-
eral interesting features are easily visualized. In particular, we find that the QCL in this case 
undergoes a profound transformation at the quantum speed limit, in which extrema split up to 
make way for multiple optimal solutions.

For control fields with more than two time slots, we use indirect methods to unravel the 
structure of the landscape. We consider the distances between optimal fields, which allows us 
to map the topological structure of the landscape (for e.g. number and distribution of maxima). 
Regarding the fidelities of those optimal fields, we study the emergence of traps due to the 
constraints imposed to the problem, and show that for a fixed discretization, landscapes with 
T closer to the Tmin are more likely to show traps. We also compute the R metric defined in 
[21], which is a measure of the straightness of the path taken by the optimizer through the 
landscape, connecting an initial seed with the corresponding optimized solution. This measure 
gives us information about the structural properties of the landscape. These methods allow 
us to characterize the QCL in these cases, and we believe that results shown here serve as a 
testbed for future studies in more complex quantum systems. An interesting byproduct of our 
study is that many of the features directly visualized in the 2D landscape carry over to higher 
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dimensions (with Nts as large as 1000). It would be interesting to analyze to what extent we 
can learn about the QCL by using a small-dimensional ansatz for the control field in other 
types of quantum system, a matter which we leave for future study.

Considering that the quantum control landscape contains the relevant information for 
coherent control, and that we have been able to unravel its structure for a simple system, 
our work represents a step forward to the understanding of this important functional in more 
complex systems, especially its behavior near the minimum control time. We also note that in 
[40], the optimization complexity for the same model has been studied using Reinforcement 
Learning techniques, and many connections with our results can be observed. Altogether, this 
deeper understanding of the control properties paves the way for the systematic generation of 
high-speed protocols that can effectively control real quantum systems facing decoherence.
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Appendix.  Symmetries in the QCL

Consider a control task where the final state | f 〉 is obtained by rotating the initial state |i〉 an 
angle π about y-axis,

e
−iπσ̂y

2 |i〉 = | f 〉.� (A.1)

The Landau–Zener propagator (equation (1)) is invariant under such rotation; thus, any con-
trol task given by (A.1) has an associated QCL that exhibits the following symmetry:

J[ε(t)] = |〈 f |ÛT [ε(t)]|i〉|2

= |〈i|e
−iπσ̂y

2 ÛT [ε(t)]e
iπσ̂y

2 | f 〉|2

= |〈i|UT [ε(t)]| f 〉|2

= J[ε(T − t)].

If we consider a control task with initial and final states related by a π rotation about x-axis, 
it is easy to show that J[ε(t)] = −J[ε(T − t)].
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